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On the basis of a small Froude number theory it is shown that previous horizontal- 
duct models of the withdrawal of fluid from a stratified tank with a free surface 
and a fixed bottom are inappropriate at  large times and that the flow should be 
modelled by that from an infinite vertical duct. The falling horizontal free surface 
in the tank is replaced by a vertically moving column of stratified fluid and the 
tank bottom is modelled by a stagnant pool of fluid below. This model is analysed 
and a solution uniformly valid in time is presented. The properties of the solu- 
tion are then compared with existing theories and experiments. 

1. Introduction 
For much of the year the impounded waters of a storage reservoir are tempera- 

ture-stratified. This stratification is most pronounced at  the thermocline, but 
there is also usually a weak, nearly linear, temperature gradient throughout the 
hypolimnion where the intake structures of a reservoir are located. Without 
stratification the streamlines close to the intake would be essentially radial, but 
a vertical density gradient may produce buoyancy forces comparable to inertia 
forces, so that the water withdrawn comes from a thin horizontal layer at the 
level of the intake. This phenomenon is often called selective withdrawal. 

Such layers have received a good deal of attention. Yih (1965) and later Kao 
(1965, 1970) established the dynamics of the layer when the fluid is inviscid. 
Koh (1966) investigated sink flow in a linearly stratified diffusive fluid of infinite 
extent. He neglected the inertia forces and made the usual boundary-layer-type 
simplifications. The flow was found to be self-similar and the solution exhibited 
a horizontally layered flow towards the sink. This solution conserved volume 
flux through a vertical section but, as shown by Imberger (1972), did not con- 
serve momentum. The relation between Kao’s (1970) and Koh’s (1966) work 
was explained by Imberger (1972), who considered the withdrawal of fluid 
contained in an infinitely long, horizontal duct. He demonstrated that, provided 
that the Froude number P was small and the Rayleigh number Ra and the 
Reynolds number Re were large, the flow could be partitioned into three distinct 
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regions. It was shown that a slow uniform upstream flow became layered by the 
action of buoyancy and that a t  a critical distance xc = O(F8Rai) from the sink 
inertia forces became comparable to the buoyancy and viscous forces. The 
final region described the convergence of the flow towards the point sink at  the 
origin, This region had a length O(F*) and the flow there was governed by a 
pure buoyancy-inertia balance with viscous sublayers providing the transition 
to the outside flow. 

Comparison with laborattory experiments proved to be excellent, but com- 
parison with the only available field data (Wunderlich & Elder 1968) was much 
less encouraging. The predicted layer thicknesses were considerably smaller 
than those observed. Two explanations may be suggested for this difference. 

First, molecular values of the transport coefficients underestimate the true 
values and they should thus be replaced by higher eddy coefficients. With the 
assumption that heat and vorticity diffuse a t  equal rates, a typical value of the 
eddy coefficient necessary to  coalesce the prototype data onto the theoretical 
predictions of Imberger (1972) was shown to be 10-1 cm2 s-l, a value which 
compares rather well with the measurements of Orlob & Selna (1970). 

Second, the data of Wunderlich & Elder (1968) were collected under normal 
turbine operating conditions. This meant that the withdrawal rate fluctuated 
considerably over a 12 h interval and the flow did not have sufficient time to 
establish itself fully. Recently, Pao & Kao (1974) and Kao, Pao & Wei (1974) 
considered the start-up of a sink in an infinitely long horizontal duct and illus- 
trated that part of the explanation for the larger observed withdrawal-layer 
thickness may be the fact that the layer had not reached a steady state and had 
not fully contracted when the measurements were taken. 

However, these and all previous authors assumed that the fluid withdrawn 
originates from a source at  infinity at the level of the sink. This leads to con- 
ceptual difficulties which are most obvious if one considers the flow at small 
Froude number of an inviscid fluid into a line sink. 

Upon start-up of a sink in both vertically bounded or unbounded fluid 
domains the fluid motion set up by the initial pressure field is a potential flow. 
However, as the motion proceeds the vertical density gradient collapses it into 
a line jet flowing horizontally into the sink. (See figure I a.) Thus, as demonstrated 
by Pao & Kao (1974), a steady state is never achieved since this collapse is 
determined by internal wa,ves moving out from the sink with a finite group 
velocity. I n  the unbounded case this difficulty remains even if the fluid is vis- 
cous: the radial flow must still change into a layered flow. In  a horizontal duct 
the situation may be remedied by the inclusion of viscosity, which forces the 
layer to retain the initial uniform motion upstream a t  all times. This self- 
consistency of the horizontal-duct problem was assumed by Imberger ( 1972) 
and has recently been proved by Pao & Kao (1974). 

However, reservoirs have a rear impermeable boundary and laboratory 
observations of both withdrawal from and discharge of a fluid into a stratified 
tank by Darden, Imberger & Fischer (1975) suggest that the fluid motion is not 
modelled by the horizontal-duct configuration, but rather by a deck-of-cards 
analogy. For, consider a deck of cards resting on a table. If a single card is 
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FIGURE 1. (a )  Flow of an inviscid fluid in a horizontal duct, showing the development of 
the uniform upstream flow into a withdrawal layer. ( b )  Steady-state solution for an 
inviscid fluid in a vertical duct moving with a small Froude number. 

carefully withdrawn from the centre of the deck that portion of the cards under 
the selected card remains stationary and the portion above merely falls vertically 
to take up the space vacated by the withdrawn card. In  principle this is exactly 
what is observed when a fluid is withdrawn from a stratified tank a t  small 
Froude numbers. 

The above observations suggest the model depicted in figure l(b). The fluid is 
contained in a vertical duct with the fluid below the sink at  rest and that above 
the sink falling as a solid body. It may be expected that this model will provide 
a useful description as long as the thickness of the withdrawal layer is small 
compared with the actual depth of the reservoir or tank. It is shown below that 
a t  small Froude numbers the final withdrawal-layer thickness is very much 
smaller than the reservoir length and the motion above the layer is vertica.1. 
Thus, even for reservoirs with small depth-to-length ratios, the .withdrawal 
layer occupies only a small fraction of the depth and the vertical-duct model 
yields the correct solution. Furthermore, the small Froude number solution for 
an inviscid fluid approaches a limit which is consistent with the initial boundary 
condition (see figure 1 b).  

In  this paper a solution for the model just described is derived which gives the 
time development of the flow due to an impulsively started sink with a small 
Froude nitmber. 

2 1-2 
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FIGURE 2. The vertical-duct model adopted. 

2. Equations governing the flow 
The model considered is depicted in figure 2. The sink is situated a t  the origin 

of the X, Z co-ordinate system and the water is assumed to be linearly stratified. 
At the vertical walls the boundary conditions specified are those of zero stress 
and zero density flux. 

The motion which follows a sudden start-up of a discharge Q is characterized 
by three time scales. These are the period of the internal wave motion, the 
evolution time of the withdrawal layer and the time required to empty the tank. 
In  this analysis it is assumed that these time scales are ordered and that the 
evolution time of the withdrawal layer is equal to  or larger than the internal 
wave periods, but much smaller than the time required to empty the tank. 
With these assumptions it is possible to analyse the flow. 

Immediately after the initiation of the motion the flow is pseudo-potential, 
and thus the correct length scale is L, the width of the strip, and the stream 
function is O(Q). For the initial development of the motion the time scale T is 
given by the Brunt-VaisalL period (eg)-$, where 8 = - S;ldS,/dZ, So being the 
mean density and 8, the equilibrium stratification. The magnitude X of the 
density perturbations is O(S,cLF), since it is required that the buoyancy terms 
balance the unsteady inertia terms a t  all times. 

With these estimates the correct non-dimensional variables to introduce for 
the initial flow regime are given by 
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I n  terms of these variables the Boussinesq approximation to the equations of 
motion becomes 

(1)  

12) 

where F = Q/L2(eg)*, Ra = geL4/vD, Pr = v/D, v is the kinematic viscosity and 
D is the coefficient of salt or heat diffusion. 

The approximation sought is obtained by setting F = 0 and Ra = a; this 
yields the Aow equations for an inviscid non-diffusive fluid moving with a small 
Froude number: 

V2$t + F(11',V21Cr,V2&) = 8, + (PrlRa)* (V2?kZZ + WXJ,  
St + $x + -F( - @x% + Pas,) = ( P r W - 4  (sx, + S Z h  

V2$bt = s,, st+$, = 0. (31, (4) 

I n  both model tank experiments and prototype flows the Rayleigh number Ra 
is always very large. The meaning of the small Froude number assumption 
becomes clear by noting that the Froude number may be written as 

(sd-4 wave period 
L2/Q - time taken for the fluid to fall a distance L' 

F = - -  

Thus the assumption F = 0 is valid provided that the flow evolves into a layer 
before the linear density stratification has been appreciably modified by the 
vertical convection of the density perturbation. In  other words the change in 
density gradient induced by the falling mass of fluid above the sink level is 
ignored. 

If F is small but not infinitesimal then the steady-state solution found here 
will be an outer solution in the spirit of Imberger (1 972). Furthermore, for flow 
in a reservoir of depth-to-length ratio h it should be noted that the convective 
acceleration terms are now O(h-lF). For the given solution to be uniformly valid 
in time for such a case it is required that A-lF also is small. 

The solution to (3) and (4) will be given in 93. However, as discussed in the 
introduction, this initial flow changes from a potential flow to a flow with a 
thin withdrawal layer a t  the origin. Thus as time proceeds the vertical scale 
changes from L to S, the withdrawal-layer thickness, and the solutions to (3) 
and (4) cannot be expected to hold for large times. Both the vertical length scale 
and the time scale of the motion change as the motion proceeds in such a way 
that the balance of forces adjusts until the viscous forces are of the same magni- 
tude as the buoyancy and unsteady inertia forces. 

When this triple force balance has been achieved the time scale has become 
O ( B d / ( e g ) h ) ,  and vertical length scale 6/L has reduced to O(Ra-i) and the 
density perturbation has become O(8,eLF Ra&). With this scaling the convective 
inertia terms become O(F Ra*) and as in the horizontal-duct problem investi- 
gated by Imberger (1972) may be neglected provided that the critical distance 
x,, equal to  LFgRa, is small compared with the duct width L. 

It is therefore necessary to rescale the previous non-dimensional variables 
and introduce the following new variables: 

( = x ,  r = x R a i ,  r=tRa-k,  p=sRa-: .  
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Equations (1) and (2) then become 
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Ra-Q$gtT + $TTT -!- O(P Rai f = pc i Pr4kqTTT + O(P& Ra-*) 

p7 + $[ + O(FRa4) = ~ r t p , ,  + O(Pr-i R U - ~ ) ,  

15) 

(6) and 

where the term $tt7 has been retained so that the solutions of (3) and (4), govern- 
ing the small time behaviour, will automatically match the solutions of (5) and (6). 

Elimination of the density p from (5) and (6) yields 

$p11(6) - ( ’ + Pr) Pr-B$$4)7 + Ra-4$[[TT + $?,T77 + $66 = ‘9 (7) 

where once again terms O(Ra-*) have been neglected except for the single term 
$rltTTY which must be retained to preserve the uniform validity of the approxi- 
mation. 

3 .  Solutions for small times : inviscid flow 

and (4), namely 
The equation for {I. valid for small times is obtained by eliminating p from (3) 

v211.,,+31.,, = 0. (8) 

$ ( O , x , t )  = -&sgn(z)H(t) ,  $ ( l , x , t )  = i H ( t ) ,  (9), (10) 

$(x, 03, t )  == (x- * ) H ( t ) ,  $(x, -a, t )  = +H(t) .  (11L (12) 

This equation must now be solved subject to the following boundary conditions: 

Equation (8) is most easily solved by taking a Laplace transform in t and then a 
Fourier transform in x .  These are defined as follows: 

and $(x, x ,  s )  eikzdx. 
(277)+ Sm - 0 2  - 

- _. 

$(x, Ic, s) = - 

Witfh this convention (8)-(10) yield 
- - 
ITxx - a2lJ = 0, 

where a 2  = s2k2 I( 82 + I ) ,  

The solution to (15) satisfying (17)  and (18) is given by 

sinholx i 1 sinha(1-x) 

where 

and 
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The inversion of ql is straightforward and leads to the contribution 

$l(x,x,t) = kxH(t). (22) 

The inversion of g2 is more complicated, but may be carried out by the method 
of residues : 

where y is chosen such that all the residues lie to the left of the path of integration. 
Consider first the Fourier inverse 

- 1 sinh [a( 1 - x)] e-ikadk 
sinh a 

The only singularities of the integrand are simple poles and these are located a t  

kn = cinn(s2+l)*/s (n = 0, I, ...), ( 2 5 )  

which all lie on the imaginary axis provided that Re ( s )  is chosen large enough. 
The theory of residues leads to the solution for 3, for x > 0: 

1. (26) 
- (1-x)sgnz (-l)msin[nn(l-x)] 1 -n7r(s2+ l ) Z +  
?/f2(x,z,s) = 2 s n = l  =n n -exP[ S 

Carrying out the Laplace inverse and combining this with (22) leads to the 
solut>ion for $ for x > 0:  

( - l )~sinn7r( l -x)  
?)(x, 2, t )  = (x - 2 )  H ( t ) + m z l y  n 

Similarly, for z < 0 the solution is given by 

( - 1)n sinnn(1 -x) 
$(X,X,t) = $H(t ) -  c - 

n=l  n- 9% 

As already mentioned in the introduction, Pao & Kao (1974) showed that a 
horizontal duct acts as a wave guide and the internal waves emanating from 
the sink travel upstream unattenuated. The situation here is quite different 
because of the presence of the vertical walls. The curving of the streamlines 
produces baroclinic vorticity which may be decomposed into left- and right- 
going waves with phases such that they will always add destructively, so that 
the disturbance initiated at the sink dies out exponentially in both the upward 
and downward directions. This is most clearly illustrated if we look a t  the large 
time behaviour of the solution given by (26). Approximating a by its value a t  
s = 0 and inverting the Laplace transform first yields an expression for the 
Fourier transform of $2(x,  x ,  t )  : 

q5,(x, k, t )  N 5 [H{t’+k(l  -x) - (2n+ 1) k ) - H { ( t ’ - k ( 1  -x) - (2n + 1) k)] dt’. 
0 n=O 
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The integrand in (29) exhibits two series of wavelike motions, one travelling 
to the right and the other to the left with speed (eg)*/k. Their combined effect, 
however, cancels and (29) reduces to a form independent of time: 

qqx,  k, t )  N - 2k( 1 - x). 

This is quite different from the behaviour in a horizontal duct, where only out- 
going waves exist and these propagate unattenuated except for viscous damping. 

4. Solutions for large times: steady viscous flow 
For times larger than O( (cg)* Bug) but smaller than O(L2/&) a quasi-steady 

state exists and the fluid motion is adequately described by the steady counter- 
part to (7), namely 

The boundary conditions (9)-( 12) must be supplemented by zero-stress and 
zero-mass-flux conditions at the wall. The Fourier transform of y9 with respect 
to the verticaI co-ordinate 7 which satisfies the boundary conditions is given by 

&(a) i- &[ = 0. ( 30) 

The only singularities, apart from the S(k)  at the origin, are simple poles which 
are located at  

(32) kn = ( n r ) + { e i t n ,  eqin, e:in 7 &in 3 eQin , ez8&ir? J '  

Hence the inverse of (31) may be obtained simply by the theory of residues. For 
q > o  

-- 2 "  c (--L)n sin [nn( 1 - [)I cos [g ( n n ) + y ]  exp [-+I (33) 
3 nn- 

and for 7 < 0 

5. A solution uniformly valid in time 
In principle the solution of (7) may be obtained in the same way as in the 

two previous cases. The transform variable 3 which satisfies the boundary 
conditions (9)-( 12) and yields zero stress at the walls and zero mass flux across 
the walls is again given by (19), but with the function a now given by 

k 4 + ( 1 + ~ ~ ) ~ ~ - b k 2 + ~ 2  
(35) a2 = 

Ra-6 s2 + 1 
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Using the notation of the previous section, 

sinh [a( 1 - [)] eST-ikldkds 
(36) sinh a 

The integrand in (36) is an odd function of k and $ may therefore be written in 
the form 

where 
F([, k, T )  = -. 1 j ~ + i m L s i n h a ( l - [ )  estds. 

2nz y - i m  s sinh a 

The path of integration in (38) is parallel to the complex s axis and to the 
right of all singularities. There are no branch points; the only contributions to 
the integral in (38) come from a pole a t  s = 0 (the steady solution -@2 derived in 
the previous section) and from poles where 

$ = -  2 2  n n ,  

or equivalently at  points in the s plane given by 

sF,2) = - (1 + ~ r )  k4k {(I  +Pr)Zk*-- 4Pr(k2+n2n2Ra-+) (k6+n2n2)}* 
2( k2 + n2n2 Ra-*) Pr4 * (39) 

Thus we may further subdivide the contribution from the first part of (37) 
into a steady part $z and a time-dependent part $3. The value of $, is given by 
(33) and (34). The contribution 3h3 may be evaluated by noting that, for real 
k > 0, the real parts of sg) and sg' are less than or equal to zero for every n, so 
that the solution $3 will be wavelike and will decay exponentially with time. 
Thus the integral in (38) may be evaluated by summing the residues at  the poles. 
After some tedious algebra krg may be shown to be given by 

where 
( k 2 +  1 )  [rg)exp (ur2)T) (b  + T : ) ~ )  -rg)exp ( a r : ) ~ )  ( Z ~ + r f ) ~ ) ]  

~ n ( 7 7 7 )  = jo k(ck6 + b )  [k8 - 4( 1 + k2)  (ck6 + b)]* 

x sin (Ru-Bnnqk) dk, (41) 

with 
- k4 k [ks - 4( I + k2)  (ck6 + b)]* r g . 2 )  = 

2 ( 1 + k 2 )  2 

and c = Pr/( 1 + Pr)2. 145) 

$(L ?1>7) = $1 + $2 + $3. (46) 

The complete solution for the stream function is thus 

The evaluation of E7&(q, r )  was carried out numerically by Filon's method. 
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6. Discussion 
The solutions derived here are applicable when the Proude number P, the 

inverse Ra-I of the Rayleigh number, the inverse Re-I of the Reynolds number 
and the product PRa* are all much less than one. The Prandtl number is assumed 
to be O( 1). The development with time of the stream function is shown in figures 
3(a) - (d)  for saJt-stratified water and a Rayleigh number typical of a laboratory 
situation. However, the values of the Rayleigh and Prandtl numbers will only 
influence the presentation of the solution a t  intermediate times (figures 3 b, c), 
since for both times smaller than O(eg)-*) and larger than O(RaQ(Eg)-t) the 
scaling incorporates the dependence on both Ra and Pr .  Thus the representations 
shown in figures 3 (a)  and ( d )  are valid for all values of the Rayleigh and Prandtl 
numbers. 

Inspection of figures 3 (a)-(c) shows that the predicted flow development 
may be expected to yield a realistic description of the motion in a tank with a 
free surface provided that the depth-to-length ratio is greater than one. However, 
the steady-state solution shown in figure 3 ( d )  will represent the flow in a shallow 
tank which has a depth-to-length ratio greater only than O(Ra-i). 

The asymptotic limit adopted here is identical to that used by Imberger 
(1972) and thus it is not surprising that, as 7 and 6 tend to zero, the steady-state 
solution given by (33) and (34) approaches 

where 5 = q/@. This is the same limit as in the horizontal-duct problem. Hence 
the inner solution found by Imberger (1972) is also valid here and once again 
we have a partitioning of the flow into three distinct regions, each characterized 
by a different force balance. 

This asymptotic behaviour explains why some previous investigators found 
good correlation between experimental data, taken niost'ly close to the sink, 
and theories established for either an unbounded fluid or one contained in a 
horizontal duct. As may be seen in figure 3 ( d ) ,  the layer thicknesses, defined by 
the point of zero horizontal velocity, agree quite well out to a distance of about 
one-fifth of the length of the tank. Beyond this the present solution predicts a 
somewhat thinner withdrawal layer. 

I n  most experimental situations the depth-to-length ratio is smaller than one, 
but considerably larger than Ra-B. Kao et al. (1974) have recently shown that 
in such cases the initial flow resembles potential flow in a horizontal duct, the 
upstream velocity being uniform and horizontal. This is made possible by the 
falling free surface, which induces a horizontal velocity equal to  &Id( 1 - t), 
where d is the depth. They further showed that this uniform flow is modified 
initially only by outgoing waves. This is not a contradiction of the above work, 
but rather a natural consequence of the small depth-to-length ratio. Since the 
fluid can move horizontally, without violating any boundary condition, no 
internal vorticity is generated upstream of where the outgoing waves have 
penetrated and hence no left-moving internal waves are generated. 
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However, as the motion proceeds, and the first waves have passed, the hori- 
zontal motion will be progressively replaced by a vertical motion which in turn 
will lead to the production of internal vorticity which may be decomposed into 
iiiternal right- and left-going waves. The flow will then be described by the 
vertical-duct model and a pseudo-steady state will be reached after times 

This explanation is further reinforced if one analyses the scaling of the hori- 
zontal-duct problem in a similar fashion to that described in $2 above. The 
appropriate vertical scale now becomes the depth d since the equations must 
describe the transition from a uniform flow, extending over the whole duct 
depth, to a withdrawal layer at the origin, of thickness O(Ra-*d), where the 
Rayleigh number is now based on the depth d. The correct horizontal length 
scale is Ra4d and the time scale becomes Ra*/(eg)*. The equation for the stream 
function then becomes identical to (7), whose steady form has been solved by 
Imberger (1972) and whose inviscid limit has been obtained by Pao & Kao (1974). 
However, the much larger time and length scales must be emphasized, since 
these make it difficult to achieve a horizontal-duct flow in the laboratory, unless 
the depth is very small. 

Lastly, it is interesting to apply the above results to the field data obtained 
by Wunderlich & Elder (1968) in the T.V.A. reservoirs. The field data from the 
Fontana reservoir suggest a, typical depth of 60m, a Vaisala frequency of 
0.02 s-l, a length of 30 km and a Froude number, based on the length, equal to 
lo-*. In  accordance with the work of OrIob & Selna (1970), a typical value for 
the kinematic viscosity and diffusivity of heat is m2 s-l. This leads to a 
value of Ra of loz4, which in turn means that the time taken to reach a fully 
steady flow is close to 3 days. This must be interpreted with care as F R d  is 
O(l) ,  but there is no doubt that the flow had not reached a steady state when 
the data were taken. 

O(Ra*/(&. 
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